New perspectives on changes in tropospheric NO₂ from the OMI and TROPOMI sensors #### **Folkert Boersma** Alba Lorente, Henk Eskes, Pepijn Veefkind, Jos van Geffen, Maarten de Zeeuw, Hugo Denier van der Gon, Steffen Beirle, and Maarten Krol ### NO₂ plumes in the Benelux Right after instrument cooler opened No measured solar irradiance spectrum yet **VIIRS** nighttime lights ### NO₂ plumes from Paris ### NO₂ plumes from Paris #### TROPOMI NO₂ tropospheric VCD #### **ECMWF ERA-I wind speed @BL** 23 February 2018 Wind at 12 UTC ### **NO₂** increase over Paris 'urban background' surface measurement ### NO₂ increase over Paris O 'urban background' surface measurement **SUNDAY** #### Validation of TROPOMI v1.1 at Eiffeltower ### **NO₂** line density over Paris Slide 8 - EOS-Aura meeting, 28 August 2019 ### NO₂ line density over Paris ### **Emission pattern matters** Simulate line density by accounting for spatially varying emissions $$N_{i}(x) = \frac{E(x_{i})}{k} \left(1 - e^{-k(x - x_{i})/u}\right) \frac{[NO_{2}]}{[NO_{x}]} \quad \text{for } x \ge x_{i}$$ $$N_{i}(x) = 0 \quad \text{for } x < x_{i}$$ $$N(x) = \sum_{i=1}^{n} N_{i}(x)$$ TNO emission pattern - - - - Superposition model ### Large ensemble of modeled line densities #### Fixed parameters boundary layer mean ECMWF wind NO_x:NO₂ boundary layer mean from CAMS model #### Varied parameters (5+1) E_i – initial guess from TNO-MACC-III inventory k – initial guess from CAMS model, uncertain because of [OH] x [km] ### Paris NO_x emissions Feb - Jun 2018 - Daily emission estimates - TROPOMI captures weekend reductions - February: TROPOMI higher than inventory - Apr-June: TROPOMI comparable to TNO-MACC-III (2018) #### **Summary** - TROPOMI captures build-up of NO₂ over a source region - Information on spatial distribution of emissions! - Estimate noontime NO_x emissions on a day-by-day basis - Weekend effect clearly seen! - TROPOMI NO_x emissions 5-15% lower than inventory for 2012 - long way from projected 26% reductions for 2018 vs. 2011 Day with stagnation ### Some needs for OMI and TROPOMI NO₂ #### Lessons learned from the FP7 QA4ECV project Need pixel-scale information on state-of-the-atmosphere! - Take surface reflectance anisotropy into account - This means: replace LER in cloud and NO₂ AMF calculation - Pixel-resolution a priori profiles of NO₂ - This means: replace profiles from coarse-scale models TM5 at $100x100 \text{ km}^2 \rightarrow \text{WRF-Chem } 20x20 \text{ km}^2$ Visser et al., ACP, 2019 ### Some needs for OMI and TROPOMI NO₂ #### (c) Directional GOME-2A Min LER 494 nm Lorente et al., AMT, 2018 3-D effects of clouds Foto Tim Vlemmix ### Focus on The Netherlands ### Focus on The Netherlands ### NO_x emission pattern #### Constraint on emission patterns: - TROPOMI provides information on the sub-urban distribution of emissions in Paris. - The spatial variability in our inferred NO_x emissions is similar to the a priori distribution from TNO-MACC-III. #### **Ensemble of forward model simulations** 17th April 2018 T12:18 UTC Wind 24 km/h , wind_dir = 197° #### Levenberg-Marquardt #### Best ensemble member #### Uncertainties in NO_x emissions - Replace NO_x:NO2 ratio CAMS by Eiffel Tower: <3% difference - Wind speed uncertainty of ±20% has similar effect - Replacing CAMS by CLASS a priori [OH] has some effect - Weak sensitivity to emission pattern (next slide) | | Uncertainty | Effect on NO _x emissions | |--|-------------|-------------------------------------| | S5P-TROPOMI NO ₂ column | 30% | 30% | | NO ₂ :NO _x ratio | 20% | <3% | | Wind speed | 20% | 20% | | A priori NO _x loss rate | 50% | 15% | | A priori emission pattern | 20% | 10% | | Total uncertainties assuming | | $\pm 50\%$ | | uncorrelated error contributions | | | #### **Discussion** Clear-sky days only, emissions for noon-time Method requires advection in well-defined direction (no re-circulation) #### OH in Paris BL from CAMS vs. CLASS #### Weak constraint on NO_x lifetimes: ±11 hrs in February 2-4 hrs in April-June NO_x lifetimes merely represent an improvement to prior, uncertain knowledge on OH concentrations from the CAMS model, constrained via the observed line densities. The lifetimes correspond to [OH] of 1-12×10⁶ molec./cm³, consistent with other estimates^{7,16,24,25}. # Day with stagnation # Superposition model (1) - Forward model function that simulates NO₂ line density as a function of distance x over the city. - Individual *i* representations of the column model: $$N_{i}(x) = \frac{E(x_{i})}{k} \left(1 - e^{-k(x - x_{i})/u}\right) \frac{[\text{NO}_{2}]}{[\text{NO}_{x}]}$$ $$k = \frac{k'[\text{OH}][\text{M}]}{([\text{NO}_{x}]/[\text{NO}_{2}])}$$ Accounts for spatially varying emission rates E_i in the urban area # Why is TROPOMI NO₂ biased low? TROPOMI SCDs most of the time higher than OMI QA4ECV SCDs ### Why is TROPOMI NO₂ biased low? TROPOMI stratospheric NO₂ similar or lower than SAOZ ### Why is TROPOMI NO₂ biased low? #### Tropospheric NO₂ - Tropospheric column lower than OMI QA4ECV - Validation: 10-50% lower than MAX-DOAS Points to errors in the AMF - A priori NO₂ profile shape - Surface albedo - Clouds ## Using a-priori profiles from CAMS-regional CAMS-rg NO2 tropospheric column, 26 July 2018 Single overpass, 26 July 2018 ### Using a-priori profiles from CAMS-regional Ratio NO2 tropospheric column CAMS a-priori / TM5MP a-priori